تحقیق درباره تشخيص نفوذهاي غير عادي در بستر شبكه

تحقیق درباره تشخيص نفوذهاي غير عادي در بستر شبكه

تحقیق درباره تشخيص نفوذهاي غير عادي در بستر شبكه

↓↓ لینک دانلود و خرید پایین توضیحات ↓↓

فرمت فایل: word 

 (قابل ویرایش و آماده پرینت)

تعداد صفحات:21

 

 

قسمتی از متن فایل دانلودی:

تشخيص نفوذهاي غير عادي  در بستر شبكه با تشخيص outlier  هايي كه از قبل بررسي نشده اند

چكيده :

تشخيص ناهنجاري (anomaly) موضوعي حياتي در سيستم هاي تشخيص نفوذ به شبكه است (NIDS) . بسياري از NIDS هاي مبتني بر ناهنجاري «الگوريتمهاي پيش نظارت شده » را بكار مي گيرند كه ميزان كارايي اين الگوريتمها بسيار وابسته به دادها هاي تمريني عاري از خطا ميباشد . اين در حالي است كه در محيط هاي واقعي و در شبكه هاي واقعي تهيه اينگونه داده ها بسيار مشكل است . علاوه بر اينها ، وقتي محيط شبكه يا سرويسها تغيير كند الگوهاي ترافيك عادي هم تغيير خواهد كرد .

اين مساله به بالا رفتن نرخ مثبت نمايي  در NIDS هاي پيش نظارت شده منجر مي شود . تشخيص يك انحراف كامل (outlier) پيش نظارت نشده ميتواند بر موانعي كه در راه تشخيص ناهنجاري هاي پيش نظارت شده وجود دارد غلبه كند . به همين دليل ما الگوريتم « جنگلهاي تصادفي »  را كه يكي از الگوريتمهاي كار امد براي استخراج داده است به خدمت گرفته ايم و آن را در NIDS هاي مبتني بر ناهنجاري اعمال كرده ايم . اين الگوريتم ميتواند بدون نياز به داده هاي تمريني عاري از خطا outlier ها را در مجموعه داده هاي  ترافيك شبكه تشخيص دهد . ما براي تشخيص نفوذهاي ناهنجار به شبكه از يك چارچوب كاري استفاده كرده ايم و در اين مقاله به شرح همين چارچوب كاري ميپردازيم .

در اين چارچوب كاري ، الگوي سرويسهاي شبكه از روي داده هاي ترافيكي و با استفاده از الگوريتم جنگلهاي تصادفي ساخته شده است . توسط outler تعيين شده اي كه با اين الگوهاي ساخته شده مرتبط هستند نفوذها تشخيص داده مي شوند. ما نشان ميدهيم كه چه اصلاحاتي را روي الگوريتم تشخيص outlier جنگلهاي تصادفي انجام داديم . و همينطور نتايج تجربيات خود را كه بر اساس مجموعه داده هاي KDD 99 انجام شده است گزارش ميدهيم .

نتايج نشان ميدهد كه روش پيشنهادي با ساير روشهاي تشخيص ناهنجاري پيش نظارت نشده اي كه قبلا گزارش شده اند كاملا قابل مقايسه است . البته روشهايي كه بر اساس مجموعه داده هاي KDD 99 ارزيابي شده اند.

و...